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Abstract  

Advancements in deep learning and computer vision provide promising solutions for medical image 

analysis, potentially improving healthcare and patient outcomes. However, the prevailing paradigm of 

training deep learning models requires large quantities of labeled training data, which is both time-

consuming and cost-prohibitive to curate for medical images. Self-supervised learning (SSL) has the 

potential to make significant contributions to the development of robust medical imaging models through 

its ability to learn useful insights from copious medical datasets without labels. In this review, we provide 

consistent descriptions of different self-supervised learning strategies and compose a systematic review of 

papers published between 2012 and 2022 on PubMed, Scopus, and ArXiv that applied self-supervised 

learning to medical imaging classification. We screened a total of 412 relevant studies and included 79 

papers for data extraction and analysis. With this comprehensive effort, we synthesize the collective 

knowledge of prior work and provide implementation guidelines for future researchers interested in 

applying self-supervised learning to their development of medical imaging classification models.  

 

Main  

 

The utilization of medical imaging technologies has become an essential part of modern medicine,  enabling 

diagnostic decisions and treatment planning. The importance of medical imaging is exemplified by the 

consistent rate of growth in medical imaging utilization in modern healthcare1,2. However, as the number 

of medical imaging relative to the available radiologists continues to become more disproportionate, the 

workload for radiologists continues to increase. Studies have shown that an average radiologist now needs 

to interpret one image every 3-4 seconds to keep up with clinical workloads3–5. With such a huge cognitive 

burden placed on radiologists, delays in diagnosis and diagnostic errors are unavoidable6,7. Thus, there is 

an urgent need to integrate automated systems into the medical imaging workflow, which will improve both 

efficiency and accuracy of diagnosis.  
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In recent years, deep learning models have demonstrated diagnostic accuracy comparable to that of human 

experts in narrow clinical tasks for several medical domains and imaging modalities, including chest and 

extremity X-rays8–10, computed tomography (CT)11, magnetic resonance imaging (MRI)12, whole slide 

images (WSI)13,14, and dermatology images15. While deep learning provides promising solutions for 

improving medical image interpretation, the current success has been largely dominated by supervised 

learning frameworks, which typically require large-scale labeled datasets to achieve high performance. 

However, annotating medical imaging datasets requires domain expertise, making large-scale annotations 

cost-prohibitive and time-consuming, which fundamentally limits building effective medical imaging 

models across varying clinical use cases.  

 

Besides facing challenges with training data, most medical imaging models underperform in generalizing 

to external institutions or in attempting to repurpose for other tasks16. The inability to generalize can be 

largely due to the process of supervised learning, which encourages the model to mainly learn features 

heavily correlated with specific labels rather than general features representative of the whole data 

distribution. This creates specialist models that can perform well only on the tasks they were trained to do17. 

In a healthcare system where myriad opportunities and possibilities for automation exist, it is practically 

impossible to curate labeled datasets for all tasks, modalities, and outcomes for training supervised models. 

Therefore, it is important to develop strategies for training medical AI models that can be fine-tuned for 

many downstream tasks, while remaining pragmatic regarding the challenges in curating large-scale labeled 

datasets.  

 

Self-supervised learning (SSL), the process of training models to produce meaningful representations using 

unlabeled data, is a promising solution to challenges caused by difficulties in curating large-scale 

annotations. Unlike supervised learning, self-supervised learning can create generalist models that can be 

finetuned for many downstream tasks without large-scale labeled datasets. Self-supervised learning was 

first popularized in the field of natural language processing (NLP), when researchers leveraged copious 

amounts of unlabeled text scraped from the internet to improve the performance of their models. These 

pretrained large language models18,19, are capable of achieving state-of-the-art results for a wide range of 

NLP tasks, and have shown the ability to perform well on new tasks with only a fraction of the labeled data 

that traditional supervised learning techniques require. Motivated by the initial success of SSL in NLP, 

there is great interest in translating similar techniques of SSL to computer vision tasks. Such work in 

computer vision has already demonstrated performance for natural images that is superior to that achieved 

by supervised models, especially in label-scarce scenarios20.  

 

Reducing the number of manual annotations required to train medical imaging models will significantly 

reduce both the cost and time required for model development, making automated systems more accessible 

to different specialties and hospitals, thereby reducing workload for radiologists and potentially improving 

patient care. While there is already a growing trend in recent medical imaging AI literature to leverage self-

supervised learning (Figure 1), as well as a few narrative reviews21,22, the most suitable strategies and best 

practices for medical images have not been sufficiently investigated. The purpose of this work is to present 

a comprehensive review of deep learning models that leverage self-supervised learning for medical image 

classification, define and consolidate relevant terminology, and summarize the results from state-of-the-art 

models in relevant current literature. We focus on medical image classification tasks because many clinical 
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tasks are based on classification, and thus our research may be directly applicable to deep learning models 

for clinical workflows. This review intends to help inform future modeling frameworks and serve as a 

reference for researchers interested in the application of self-supervised learning in medical imaging. 

 

 

 
Figure 1. Timeline showing number of publications on deep learning for medical image classification per 

year, found by using the same search criteria on PubMed, Scopus and ArXiv. The figure shows that self-

supervised learning is a rapidly growing subset of deep learning for medical imaging literature. 

 

Terminology and strategies in self-supervised learning 

 

Here we provide definitions for different categorizations of self-supervision strategies, namely innate 

relationship, generative, contrastive, and self-prediction (Figure 2)23. The relative ordering of these self-

supervision strategies is based on the chronological order in which they were popularized. It is worth noting 

that some definitions can be overlapping since clear distinctions between each method can not always be 

made.  
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Figure 2: Illustration of different self-supervised learning and fine-tuning strategies. During Stage 1 a 

model is pre-trained using one or more of the following self-supervised learning strategies: (a) Innate 

relationship SSL pretrains a model on a hand-crafted task by leveraging the internal structure of the data, 

(b) Generative SSL learns the distribution of training data, enabling reconstruction of the original input 

(c) Contrastive SSL forms positive pairs between different augmentations of the same image and 

minimizes representational distances of positive samples closer together (d) Self-prediction augments or 

masks out random portions of an image, and reconstructs the original image based on the unaltered parts 

of the original image. During Stage 2, the pre-trained model can be fine-tuned using one of the following 

strategies: (f) end-to-end fine-tuning of the pretrained model and classifier, or (g) train a classifier which 

uses extracted features from the SSL pretrained model.  

 

Innate relationship  

Innate relationship SSL is the process of pretraining a model on a hand-crafted task which can leverage the 

internal structure of the data, without acquiring additional labels. In the most general sense, innate 

relationship models perform classification or regression based on the hand-crafted task instead of 

optimizing based on the model’s ability to reconstruct (Generative and Self-prediction) or represent the 

original image (Contrastive). Specifically, these methods are optimized using classification or regression 

loss derived from the given task. Pretraining the model on such a hand-crafted task makes the model learn 

visual features as a starting point. However, innate relationship SSL can lead to visual features that are 

effective only for the hand-crafted task but have limited benefits for the downstream task.  Examples of 

innate relationship for visual inputs include predicting image rotation angle24, solving jigsaw puzzles of an 

image25, or determining the relative positions of image patches26.     
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Generative  

Generative models, popularized through the advent of traditional autoencoders27, variational autoencoders28 

and generative adversarial networks (GANs)29, are able to learn the distribution of training data, and thereby 

reconstruct the original input or create new synthetic data instances. By using readily available data as the 

target, generative models can be trained to automatically learn useful latent representations without the need 

for explicit labels, and thus constitute a form of self-supervision. Early work that leverages generative 

models for self-supervised learning rely on autoencoders, where an encoder converts inputs into latent 

representations and a decoder reconstructs the representation back to the original image30. Subsequently, 

these models are optimized based on how closely the reconstructed images resemble the original image. 

More recent work has explored utilizing GANs for generative self-supervised learning, with improvement 

in performance over prior work31,32.  

Contrastive 

Contrastive self-supervised methods are based on the assumption that variations caused by transforming an 

image do not alter the image’s semantic meaning. Therefore different augmentations of the same image 

constitute a so-called positive pair, while the other images and their augmentations are defined to be 

negative pairs in relation to the current instance. Subsequently a model is optimized to minimize the latent 

space distances between the positive pairs and push apart negative samples. Separating representations for 

positive and negative pairs can be based on arbitrary distance metrics incorporated into the contrastive loss 

function. One pioneering contrastive-based method is SimCLR20, which outperformed supervised models 

on ImageNet benchmark using 100 times fewer labels. However, SimCLR requires a very large batch size 

to perform well, which can be computationally prohibitive for most researchers. To reduce the large batch 

size required by SimCLR to ensure enough informative negative samples, Momentum Contrast (MoCo) 

introduced a momentum encoded queue to keep negative samples33. More recently, a subtype of contrastive 

self-supervised learning called instance discrimination, which includes methods such as DINO34, BYOL35 

and SimSiam36, further eliminates the need for negative samples. Instead of contrastive augmented pairs 

from the same image, several studies have explored contrasting clustering assignments of augmented 

versions of the same image37–39.  

Self-prediction 

Self-prediction SSL is the process of masking or augmenting portions of the input and using the unaltered 

portions to reconstruct the original input. The idea of self-prediction self-supervised learning originated 

from the field of Natural Language Processing (NLP), where state-of-the-art models were pre-trained using 

the Masked Language Modeling approach by predicting missing words in a sentence18,19. Motivated by the 

success in NLP, early work in the field of computer vision made similar attempts by masking out or 

augmenting random patches of an image and training Convolutional Neural Networks (CNNs) to 

reconstruct the missing regions as a pre-training strategy40 but only with moderate success. Recently, the 

introduction of Vision Transformers (ViT) allowed computer vision models to also have the same 

transformer-based architecture. Studies such as BERT Pre-Training of Image Transformers (BEiT) and 

Masked Auto-encoders (MAE), which combine ViT with self-prediction pre-training objective, achieve 

state-of-the-art results when fine-tuned across several natural image benchmarks41,42. Similar to generative 

SSL, self-prediction models are optimized using the reconstruction loss. The key difference between self-

prediction and generative self-supervised learning methods is that self-prediction applies masking or 
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augmentations only to portions of the input image, and uses the remaining, unaltered portions to inform 

reconstruction. On the other hand, generative based self-supervised learning either applies augmentations 

on the whole image or does not apply any augmentations.  

Strategies for fine-tuning 

There are two main strategies for fine-tuning models that have been pre-trained using SSL (Figure 2). If we 

consider any imaging model to be composed of an encoder part and a classifier part, then these two 

strategies are 1) end-to-end fine-tuning vs. 2) extract features from the encoder first and subsequently train 

an additional classifier. In end-to-end fine-tuning all the weights of the encoder and classifier are unfrozen 

and can be adjusted through optimization using supervised learning in the fine-tuning phase. In the feature-

extraction strategy, the weights of the encoder are kept frozen to extract features as inputs to the downstream 

classifier. While many previous work uses linear classifiers with trainable weights (also known as linear 

probing), any type of classifier or architecture can be used, including SVMs or even non-trainable classifiers 

such as k-nearest neighbor43. It is worth emphasizing that SSL is task agnostic, and the same SSL pretrained 

model can be fine-tuned for different types of downstream tasks, including classification, segmentation, 

and object detection.  

Results

 

Figure 2. Authors independently screened all records for eligibility. Out of 412 studies identified from 

PubMed, Scopus, and ArXiv, 79 studies were included in the systematic review. 

 

A total of 412 unique studies were identified through our systematic search. After removing duplicates and 

excluding studies based on title and abstract using our study selection criteria (see Methods), 148 studies 

remained for full-text screening. A total of 79 studies fulfilled our eligibility criteria and were included for 

systematic review and data extraction. Figure 2 presents a flowchart of the study screening and selection 

process. Table 1 displays the included studies and extracted data while Figure 3 summarizes the statistics 

of extracted data. 
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Figure 3. Summary of extracted data from studies in our system review. A) Prevalence of different 

medical specialties split by self-supervised learning strategy. B) Prevalence of different medical imaging 

modalities split by self-supervised learning strategy. C) Relative performance difference between different 

types of self-supervised learning strategies on the same task. D) Performance comparison between end-

to-end fine-tuning vs. training a classifier using extracted features from pretrained self-supervised 

models. E) Relative difference in downstream task performance between self-supervised and non-self-

supervised models.  



 

 

Innate Relationship  1 

Innate relationship was used in 15 out of 79 studies (Table 1). Nine of these studies designed their innate 2 

relationship pre-text task based on different image transformations, including rotation prediction107–110, 3 

horizontal flip prediction103, reordering shuffled slices105, and patch order prediction104,109,112,113. Notably, 4 

Jiao et al. pre-trained their models simultaneously with two innate relationship pre-text tasks (slice order 5 

prediction and geometric transformation prediction), and showed that a weight-sharing Siamese network 6 

out-performs a single disentanged model for combining the two pre-training objectives46. The remaining 7 

six studies designed clinically relevant pretext tasks by exploiting the unique properties of medical images. 8 

For instance, Droste et al. utilized a gaze tracking dataset and pre-trained a model to predict sonographers’ 9 

gazes on ultrasound video frames with gaze-point regression102. Dezaki et al. employed temporal and spatial 10 

consistency to produce features for echocardiograms that are strongly correlated with the heart’s inherent 11 

cyclic pattern111. Out of all innate relationship based studies, ten compared performance to those of 12 

supervised pre-trained models and eight of them showed improvement in performance. On average, 13 

clinically relevant pre-text tasks achieved greater improvements in performance over transformation-based 14 

pre-text tasks, when compared to purely supervised methods (13.7% vs 5.03%).  15 

Generative  16 

Generative self-supervised learning was used in 3 out of 79 studies (Table 1). Gamper et al. extracted 17 

histopathology images from textbooks and published papers along with the figure captions and devised an 18 

image captioning task for self-supervised pre-training, where a ResNet-18 was used for encoding images, 19 

and the representation was fed to transformers for image-captioning100. They were subsequently able to use 20 

the learned representations for a number of downstream histopathology tasks, including breast cancer 21 

classification. Osin et al.98 leveraged the chronology of sequential images in brain fMRI for self-supervised 22 

pre-training. Brain fMRI scans are typically acquired with subjects alternating between a passive and an 23 

active phase, where the subject is instructed to perform some task or receives some external stimulus. 24 

During the self-supervision phase, Osin et al. trained two networks: an autoencoder to generate the active 25 

fMRI image given the passive image, and an LSTM to predict the next active image. The representations 26 

learned during the self-supervision were then used to train a classifier to predict psychiatric traits such as 27 

post-traumatic stress disorder (PTSD). Finally, Zhao et al. use a generative approach with an autoencoder 28 

with an additional constraint that explicitly associates brain age to the latent representations for 29 

longitudinally acquired brain MRIs99. Of the three studies, two reported comparisons with purely supervised 30 

models and showed relative improvements of 16.6%99 and 24.5%100 with self-supervised learning.  31 

 32 

Contrastive  33 

The majority of the studies that remained after our full-text screening (44/79) used contrastive learning as 34 

their self-supervised pre-training strategy (Table 1). SimCLR, MoCo and BYOL were the three most used 35 

frameworks, applied in 13, 8 and 3 papers respectively. Some papers leveraged medical domain priors to 36 

create specialized strategies for creating positive pairs. For pathology slices, Li et al. exploited that the 37 

neighborhood around a patch is likely to be similar, and used pre-clustering to find dissimilar patches62. In 38 

radiology, Ji et al. used multimodal contrastive learning by matching X-rays with corresponding radiology 39 

reports76. They extracted and fused the representations of the image and text modalities through both global 40 

image-sentence matching and local attention-based region-phrase matching. Wang et al. utilized both 41 

https://paperpile.com/c/pUU6wq/tE1pN+a22Nl+NQwk8+2JCaX
https://paperpile.com/c/pUU6wq/zKB7U
https://paperpile.com/c/pUU6wq/DV3P8
https://paperpile.com/c/pUU6wq/2JCaX+BWHov+LzmjX+viOuY
https://paperpile.com/c/pUU6wq/63FZR
https://paperpile.com/c/pUU6wq/JP2Ma
https://paperpile.com/c/pUU6wq/Fu8Jp
https://paperpile.com/c/pUU6wq/BtF3p
https://paperpile.com/c/pUU6wq/hmyvE
https://paperpile.com/c/pUU6wq/D7AHp
https://paperpile.com/c/pUU6wq/D7AHp
https://paperpile.com/c/pUU6wq/BtF3p
https://paperpile.com/c/pUU6wq/DvN4Y
https://paperpile.com/c/pUU6wq/rpVDk


 

 

radiomic features and deep features from the same image to form positive pairs93. They also utilized the 42 

spatial information of the patches, by mining positive pairs from proximate tumor areas and negative pairs 43 

from distant tumor areas. Dufumier et al. (2021) used patient meta-data from MRI to form positive pairs84. 44 

36 studies compared contrastive SSL pre-training to supervised pre-training, and reported an average 45 

improvement in performance of 6.35%.  46 

Self-prediction  47 

Self-prediction was used in six out of all included studies (Table 1). We consider studies that applied local-48 

pixel shuffling as self-prediction since the augmentation operation, which shuffles the order of pixels, is 49 

applied only to a random patch of an image. Liu et al. used a U-net model to restore Ultrasound images 50 

augmented with local-pixel shuffling, and they subsequently concatenated the outputs of the U-net encoder 51 

with featurized clinical variables (age, gender, tumor size) for the downstream prediction task121. Similarly, 52 

Zhong et al. designed three image restoration tasks on cine-MRI videos and used a U-net-like encoder-53 

decoder architecture including skip connections to perform the image restoration119. Three different image 54 

restoration tasks were set up using local-pixel shuffling, within-frame pixel shuffling, and covering an entire 55 

video frame with random pixels. Jana et al. used an encoder-decoder architecture for image restoration of 56 

CT scans that were corrupted by swapping several small patches within a single CT slice118. Jung et al. 57 

created a functional connectivity matrix between pairs of region-of-interest in rs-fMRI for each subject, and 58 

created a masked auto-encoder task by randomly masking out different rows and columns of the matrix for 59 

restoration120. Two of the five studies compared their approach to models without self-supervised pre-60 

training and reported slight relative improvements in performance of 1.12%117 and 0.690%121.  61 

Combined Approaches 62 

Eleven studies found creative ways to combine different self-supervised learning strategies to pretrain their 63 

medical imaging models (Table 1). Over half of these studies (6/11) combined contrastive with generative 64 

approaches. With the exception of Ke et al.’s work53, which uses a CycleGAN for histopathology slide stain 65 

normalization, all studies utilized an autoencoder as their generative model when combined with contrastive 66 

strategies. A combination of contrastive and innate relationships was used in three studies. The innate 67 

relationship tasks range from augmentation prediction and patch positioning prediction122, rotation 68 

prediction50, and ultrasound video to speech correspondence prediction46. For the remaining two studies, 69 

Cornelissen et al. used a conditional GAN, and trained the generator network on endoscopic images of the 70 

esophagus to either recolorize, inpaint and generate super-resolution images49. Because their tasks consisted 71 

of both inpainting (self-prediction) and super-resolution (generative), their approach was considered 72 

combined. Haghighi et al. combined three different SSL strategies (generative, innate relationship, self-73 

prediction) by first training an auto-encoder and group instances with similar appearances based on the 74 

latent representations from the auto-encoder48. Then, the authors randomly cropped image patches at a fixed 75 

coordinate for all instances in the same group, and assigned a pseudo label to the cropped patches at each 76 

coordinate. Finally, the cropped patches were randomly perturbed and a restoration autoencoder was trained 77 

simultaneously with a pseudo label classification objective. Eight of the studies that combined different 78 

strategies compared self-supervised pre-training with purely supervised approaches, all of which reported 79 

performance improvement (0.140%-8.29%).  80 
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Discussion 81 

This review aims to aggregate the collective knowledge of prior works that applied SSL to medical 82 

classification tasks. By synthesizing the relevant literature, we provide consistent definitions for self-83 

supervised learning techniques, categorize prior works by their pre-training strategies, and provide 84 

implementation guidelines based on lessons learned from prior works. While five studies reported a slight 85 

decrease in performance (0.980%-4.51%), the majority of self-supervised pretrained models led to relative 86 

increased performances of 0.216–32.6% AUROC, 0.440–29.2% accuracy, and 0.137-14.3% F1 score over 87 

the same model architecture without SSL pretraining, including both ImagetNet and random initialization 88 

(Figure 3E). In Figure 3C we show a comparison of different SSL strategies on the same downstream task, 89 

which suggests that a combined strategy tends to outperform other self-supervised categories. However, it 90 

is important to note that combined strategies are typically the proposed method in the manuscripts, and thus 91 

publication bias might have resulted in this trend. In Figure 3D we additionally plot the performance of the 92 

two main types of fine-tuning strategies on the same task, and the graph tends to indicate that end-to-end 93 

fine-tuning leads to better performance regardless of the dataset size. In the presence of relevant data, we 94 

recommend implementing self-supervised learning strategies for training medical image classification 95 

models since our literature review indicated that self-supervised pre-training generally results in better 96 

model performance, especially when annotations are limited (Table 1). 97 

 98 

The types of medical images utilized for model development as well as the downstream classification task 99 

encompassed a wide range of medical domains and applications (Figure 3A&B). The vast majority of the 100 

studies explored the clinical domain of radiology (47/79), of which 27 were focused on investigating 101 

abnormalities on chest imaging such as pneumonia, COVID-19, pleural effusion and pulmonary embolism 102 

(see Table 1). The choice of this domain is likely a combination of the availability of large-scale public 103 

chest datasets such as CheXpert123, RSPECT124, RadFusion125 and MIMIC-CXR126, as well as the 104 

motivation to solve acute or emerging healthcare threats which was the case during the coronavirus 105 

pandemic57,67,68,70,97,103,106,108,109,117,127. The second most prevalent clinical domain was pathology (12/79). 106 

Similar to radiology, this field is centered around medical imaging in the form of whole slide images. The 107 

tasks were focused on histopathological classification, where the majority focused on colorectal cancer 108 

classification53,54,64,91,115. The remaining studies explored multiple other tasks and many focused on 109 

classification of malignant disorders such as breast cancer63,93,100, skin cancer128, and lung cancer62. A 110 

particularly interesting medical task that was explored was classification of psychiatric diseases or 111 

psychiatric traits using fMRI84,98,114. Current limited knowledge and understanding of possible imaging 112 

features arising in psychiatric diseases constitutes a major clinical challenge to making local annotations 113 

such as bounding boxes or segmentations on brain scans. In this case both Osin et al. and Hashimoto 114 

demonstrated that training a self-supervised framework could be beneficial to generate representative latent 115 

features of brain fMRIs before fine-tuning on image-level class labels98,114.  116 

 117 

A majority of the included studies lacked strong baselines and ablation experiments. Even though 60 out of 118 

79 studies compared their results with purely supervised baselines, only 33 studies reported comparisons 119 

with another self-supervised learning strategy. Of the 33 studies, 26 compared with a self-supervised 120 

category that differs from their best performing model. Among the SSL baselines, SimCLR was most 121 

frequently compared (16/26), followed by autoencoders (11/26) and MoCo (9/26). Furthermore, only 18 122 

out of 79 studies indicated use of natural image pre-trained weights, either supervised or self-supervised, to 123 
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initiate their model for subsequent in-domain self-supervised pre-training. Lastly, merely 13 studies 124 

compared performance between classification on extracted features to end-to-end fine-tuning, two of which 125 

did not report numerical results. Of the 11 studies that quantitatively reported performance, eight found 126 

end-to-end fine-tuning to outperform training a new classifier on extracting features (Figure 3d). Since self-127 

supervised learning for medical images is a promising yet nascent research area and the optimal strategies 128 

for training these models are still to be explored, researchers should systematically investigate different 129 

categories of self-supervised learning for their medical image datasets, in addition to fine-tuning strategy 130 

and pre-trained weights. Researchers should also test their newly developed strategies on multiple datasets, 131 

ideally on different modalities and medical imaging domains.  132 

 133 

 134 
Figure 4. Examples of augmentations and transformations that alter the semantic meaning of medical 135 

images129 but not natural images130. A) The image shows a T2-weighted brain MRI with a cavernoma in 136 

the right parietal lobe (bounded in red). B) and C) Masking and cropping operations can obscure the 137 

cavernoma and alter the semantic meaning of the image, as the MRI-scan no longer exhibits any 138 

abnormality. E) Image of a dog (bounded in red), F) and G) Masking and cropping operations do not 139 

obscure the dog nor alter the semantic meaning of the image. 140 

 141 

https://paperpile.com/c/pUU6wq/Ncxiy
https://paperpile.com/c/pUU6wq/Fzfsk


 

 

Implementation guidelines for self-supervised learning models  142 

Definitive conclusions on the optimal strategy for medical images cannot be made since only a subset of 143 

studies made comparisons between different types of self-supervised learning strategies. Furthermore, the 144 

optimal strategy may be dependent on a number of factors including the specific medical imaging domain, 145 

the size and complexity of the dataset, and the type of classification task131,132. Due to this heterogeneity, 146 

we encourage researchers to compare multiple self-supervised learning strategies for developing medical 147 

image classification models, especially in limited data regimes. Although self-supervised pre-training can 148 

be computational demanding, many models pre-trained in a self-supervised manner on large-scale natural 149 

image datasets are publicly available and should be utilized. Azizi et al. have shown that models that are 150 

SSL pre-trained using natural images tend to outperform purely supervised pre-trained models72 for medical 151 

image classification, and continuing self-supervised pre-training with in-domain medical images leads to 152 

the best results. More recently, Azizi et al. found that using generic and large-scale supervised pretrained 153 

models, such as BigTransfer133, can also benefit subsequent domain-specific self-supervised pre-training, 154 

and ultimately improve model performance and robustness for different medical imaging modalities134. 155 

Truong et al. have demonstrated the effectiveness of combining representations from multiple self-156 

supervised methods to improve performance for three different medical imaging modalities73.  157 

 158 

It is worth noting that representations learned using certain SSL strategies can be relatively more linearly 159 

separable, while representations from other strategies can achieve better performance when more layers or 160 

the entire model are fine-tuned. For instance, for natural image datasets, MoCo outperforms MAE by 161 

training a linear model on extracted features (linear probing), while MAE achieves better performance than 162 

MoCo as the number of fine-tune layers increases41. Likewise, Cornelissen et al. demonstrated that using 163 

representations from earlier layers can improve downstream classification of neoplasia in Barrett’s 164 

Esophagus49. Factors such as the degree of domain shift between SSL pre-training data and downstream 165 

task data could also affect the linear separability of the representations. Based on our aggregated results, 166 

we found that end-to-end fine-tuning generally leads to better performance for medical images (Figure 3C). 167 

However, due to the lack of ablation studies from current work, we cannot determine whether fine-tuning 168 

only later layers of the model could lead to better performance, relative to end-to-end fine-tuning. 169 

Furthermore, even though self-supervised learning strategies generate label-efficient representations, the 170 

learning process typically requires a relatively large amount of unlabeled data. For instance, reducing the 171 

number of pre-training images from 250k to 50k typically leads to more than 10.0% drop in accuracy for 172 

downstream tasks, while reducing from 1M to 250k leads to a 2.00-4.00% decrease132. Curating large-scale 173 

medical image datasets from multiple institutions is often challenged by the difficulty of sharing patient 174 

data while preserving patient privacy. Nevertheless, Yan et al. have demonstrated the possibility of training 175 

self-supervised models with data from multiple healthcare centers without the need for explicitly sharing 176 

data using federated learning, and shown improvement in robustness and performance over models trained 177 

using data from only one institution135.  178 

 179 

The field of self-supervised learning for computer vision is constantly and rapidly evolving. While many 180 

self-supervised methods have led to state-of-the-art results when fine-tuned on natural image datasets, how 181 

translatable these results are to medical datasets is unclear, mainly due to the unique properties of medical 182 

images. For instance, many contrastive based strategies have been developed based on the assumption that 183 

the class-defining object is the main focus of an image, and thus variations caused by image transformations 184 

should not alter the image’s semantic meanings (Figure 4). Therefore, these methods typically apply strong 185 
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transformations to the original image and encourage the model to learn similar global representations for 186 

images with similar semantic meanings. However, the assumption made for natural images is not 187 

necessarily valid for medical images for two reasons. First, medical images have high inter-class visual 188 

similarities due to the standardized protocols for medical image acquisition and the homogeneous nature of 189 

human anatomy. Second, within the medical imaging domain, the semantic meaning of interest is rarely an 190 

object such as the anatomical organ, but is rather the presence or absence of pathological abnormalities 191 

within that organ or tissue. Many abnormalities are characterized by very subtle and localized visual cues, 192 

which can become ambiguous or obscured by augmentations (Figure 4c). The random masking operation 193 

often utilized by self-prediction self-supervised learning methods may also alter a medical image’s semantic 194 

meaning by removing image regions with diseases or abnormalities (Figure 4b). Recent work has 195 

demonstrated the benefit of using learned visual word masks136,137 or spatially constrained crops138,139 to 196 

encourage representational invariance with semantically more similar regions of an image. In a similar vein, 197 

we believe that augmentation strategies tailored for the nature of medical images during self-supervised 198 

learning is a future research area that warrants further research and exploration. 199 

 200 

The unique properties of medical images can be leveraged to design self-supervised learning methods more 201 

suitable for specific downstream tasks. For instance, instead of forming positive pairs with different 202 

augmented versions of the same image during contrastive learning, one can improve positive sampling 203 

according to the similarity between a patient’s clinical information. In fact, several studies have shown 204 

performance improvement when constructing positive pairs with slices from the same CT series77, images 205 

from the same imaging study75,  images from the same patient72 and patients with similar age84. Future 206 

research should explore other strategies for defining positive pairs, such as leveraging patient demographics 207 

or medical history information. The unique attributes of medical images can also be utilized for creating 208 

relevant pretext tasks. Rivail et al. proposed a self-supervised approach to model disease progression by 209 

estimating the time interval between pairs of optical coherence tomography (OCT) scans from the same 210 

patient101. Involving additional modalities during self-supervised learning has also been shown to improve 211 

a model’s performance when fine-tuned for downstream tasks. For example, Taleb et al. proposed a 212 

multimodal contrastive learning strategy between retinal fundus images and genetics data and showed 213 

improvement in performance over single modality pre-training140. Jiao et al. cleverly leveraged the 214 

correlation between fetal ultrasonography and the narrative speech of the sonographer to create a pretext 215 

task for self-supervision, and subsequently used the learned representations for downstream standard plane 216 

classification on sonograms46. Furthermore, many medical imaging modalities have corresponding 217 

radiology reports that contain detailed descriptions of the medical conditions observed by radiologists. 218 

Several studies have utilized these medical reports to provide supervision signals during self-supervised 219 

learning and shown label efficiency for downstream tasks76,141. By leveraging radiology reports, Huang et 220 

al. demonstrated the model’s ability to localize chest abnormalities on chest x-rays without segmentation 221 

labels and revealed the possibility of zero-shot learning by converting the classification classes into textual 222 

captions and framing the image classification task as measuring the image-text similarity142. However, 223 

currently there are very few publicly available medical image datasets with corresponding radiology 224 

reports, largely due to the difficulties in preserving patient privacy. Therefore, these multi-modal self-225 

supervised learning strategies are limited to implementation within a healthcare system until more datasets 226 

with medical image and report pairs are publicly released. Overall, the flexibility in creating self-supervised 227 

methods as well as the adaptability and transferability to multiple medical domains highlights the 228 

importance and utility of self-supervised techniques in clinical applications.   229 

https://paperpile.com/c/pUU6wq/8NeuG+LMTkR
https://paperpile.com/c/pUU6wq/5LVr0+84EYR
https://paperpile.com/c/pUU6wq/wlP44
https://paperpile.com/c/pUU6wq/MtxE4
https://paperpile.com/c/pUU6wq/Hsewb
https://paperpile.com/c/pUU6wq/zCM4P
https://paperpile.com/c/pUU6wq/JlydJ
https://paperpile.com/c/pUU6wq/JrGl0
https://paperpile.com/c/pUU6wq/63FZR
https://paperpile.com/c/pUU6wq/rpVDk+EcxqP
https://paperpile.com/c/pUU6wq/9toO7


 

 

Limitations 230 

For this review paper, publication bias can be a considerable limitation due to disproportionately reported 231 

positive results in the literature, which can lead to overestimation of the benefits of self-supervised learning. 232 

We also limited our search to only consider papers published after 2012, which excluded papers that applied 233 

self-supervised learning prior to the era of deep learning for computer vision143. Furthermore, we are unable 234 

to aggregate or statistically compare the effects of each self-supervised learning strategy on performance 235 

gain, since the included studies use different imaging modalities, report different performance metrics, and 236 

investigate different objectives. Additionally, subjectivity may have been introduced when categorizing the 237 

self-supervised learning strategy in each paper, especially for studies that implemented novel, 238 

unconventional, or a mixture of methods. Lastly, our study selection criteria only included literature for the 239 

task of medical image classification, which limits the scope of this review paper, since we recognize that 240 

self-supervised pretrained models can also be finetuned for other important medical tasks, including 241 

segmentation, regression, and registration. 242 

Future Research 243 

Results from this systematic review have revealed that SSL for medical image classification is a growing 244 

and promising field of research across multiple medical disciplines and imaging modalities. We found that 245 

self-supervised pre-training generally improves performance for medical imaging classification tasks over 246 

purely supervised methods. We categorized the SSL approaches used in medical imaging tasks as a 247 

framework for methodologic communication and synthesized benefits and limitations from literature to 248 

provide recommendations for future research. Future studies should include direct comparisons of different 249 

self-supervised learning strategies using shared terminology and metrics whenever applicable to facilitate 250 

the discovery of additional insights and optimal approaches.  251 

Methods 252 

This systematic review was conducted based on the PRISMA guidelines144.  253 

Search Strategy 254 

A systematic literature search was implemented in three literature databases: PubMed, Scopus and ArXiv. 255 

The key search terms were based on a combination of two major themes:  “self-supervised learning” and  256 

“medical imaging”. Search terms for medical imaging were not limited to radiological imaging but were 257 

also broadly defined to include imaging from all medical fields, i.e., fundus photography, whole slide 258 

imaging, endoscopy, echocardiography, etc. Since we specifically wanted to review literature on the task 259 

of medical image classification, terms for other computer vision tasks such as segmentation, image 260 

reconstruction, denoising and object detection were used as exclusion criteria in the search. The search 261 

encompassed papers published between Janunary. 2012 and May 2021. The start date was considered 262 

appropriate due to the rising popularity of deep learning for computer vision since the 2012 ImageNet 263 

challenge. The complete search string for all three databases is provided in Supplementary Methods. 264 

 265 

We included all research papers in English that used self-supervision techniques to develop deep learning 266 

models for medical image classification tasks. The research papers had to be original research in the form 267 

of either journal articles, conference proceedings or extended abstracts. We excluded any publications that 268 
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were not peer-reviewed. Applicable self-supervision techniques were defined according to the different 269 

types presented in the “terminology and strategies in self-supervised learning” section. We only included 270 

studies that applied the deep learning models to a downstream medical image classification task, i.e, it was 271 

not sufficient to have developed a self-supervision model on medical images. Additionally, the medical 272 

image classification task had to be a clinical task or clinically relevant task. For example, the downstream 273 

task of classifying the frame number in a temporal sequence of frames from echocardiography145 was not 274 

considered a clinically relevant task.  275 

  276 

We excluded studies that used semi-supervised learning or any amount of manually curated labels during 277 

the self-supervision step. We also excluded studies that only investigated regression or segmentation in 278 

their downstream tasks. Furthermore, we excluded any studies where the self-supervised pretrained model 279 

was not directly fine-tuned for classification after pretraining. Studies that used non-human medical 280 

imaging data (i.e., veterinarian medical images) were also excluded.  281 

 282 

Study Selection  283 

The Covidence software (www.covidence.org) was used for screening and study selection. After the 284 

removal of duplicates, studies were screened based on title and abstract, and then full texts were obtained 285 

and assessed for inclusion. Study selection was performed by three independent researchers (S.-C.H., A.P., 286 

and M.J.), and disagreements were resolved through discussion. In cases where consensus could not be 287 

achieved a forth arbitrating researcher was consulted (A.S.C.). 288 

 289 

Data Extraction 290 

For benchmarking the existing approaches we extracted the following data from each of the selected 291 

articles: a) self-supervised learning strategy, b) year of publication, c) first author, d) imaging modality, e) 292 

clinical domain, f) outcome/task, g) combined method, h) self-supervised framework, i) strategy for fine-293 

tuning, j) performance metrics, k) SSL performance, l) supervised performance, and m) difference in SSL 294 

and supervised performance (Table 1). We also computed the relative difference in performance between 295 

the supervised and self-supervised model on the p) full dataset and q) subset. We classified the specific 296 

self-supervised learning strategy based on the definitions in the section “Terminology and strategies in self-297 

supervised learning”. We extracted AUROC whenever this metric was reported, otherwise we prioritize 298 

accuracy over F1 score and sensitivity. When the article contained results from multiple models (i.e. ResNet 299 

and DenseNet), metrics from the experiment with the best average performing self-supervised model were 300 

extracted. When the authors present results from several clinical tasks, we chose tasks that best 301 

corresponded to the title and objective of the manuscript. If the tasks were deemed equal, we picked the 302 

task where the chosen SSL model had the highest performance. We picked supervised baseline with the 303 

same model architecture and pre-training dataset for performance comparison. If the author did not report 304 

performance from a supervised model that uses the same pre-training dataset, preference was given to 305 

ImageNet pretrained model over a randomly initialized one. The pre-training dataset used by the self-306 

supervised and supervised model are recorded in the Supplementary Table. When papers report results on 307 

many percentages of fine-tuning (i.e., 1%, 10%, 100%), we pick the lowest and highest to study the label-308 

efficiency of self-supervised learning methods. We also provide a Supplementary Table 1 with additional 309 
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technical details including model architecture, dataset details, number of training samples, comparison to 310 

selected baselines and performance on subsets of data. These items were extracted to enable researchers to 311 

find and compare current self-supervised studies in their medical field or input modalities of interest. 312 
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